skip to main content


Search for: All records

Creators/Authors contains: "Bao, Tianyou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2024
  2. Post-quantum cryptography (PQC) has gained sub-stantial attention from various communities recently. Along with the ongoing National Institute of Standards and Technology (NIST) PQC standardization process that targets the general-purpose PQC algorithms, the research community is also looking for efficient lightweight PQC schemes. Among this direction of efforts, Ring-Binary-Learning-with-Errors (RBLWE)-based encryption scheme (RBLWE-ENC) is regarded as a promising lightweight PQC fitting Internet-of-Things (IoT) and edge computing applications. As hardware implementation for PQC algorithms has become one of the major advances in the field, in this paper, we follow this trend to present an efficient implementation of RBLWE-ENC lightweight accelerator on the field-programmable gate array (FPGA) platform. Overall, we have demonstrated three coherent interdependent stages of efforts: (i) we have presented detailed derivation processes to formulate the proposed algorithmic operation; (ii) we have then implemented the proposed algorithm into a desired hardware accelerator; and (iii) we provided thorough complexity analysis and comparison to showcase the superior performance of the proposed accelerator over the state-of-the-art designs, e.g., the proposed accelerator with v=8 has at least 66.67% less area-time complexities than the existing ones (Virtex-7 FPGA). We hope the outcome of this work can facilitate lightweight PQC development. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. The recent research in post-quantum cryptography (PQC) field has gradually switched to efficient implementation of PQC algorithms on hardware platforms. As polynomial multiplication is typically one of the critical operations within lattice-based PQC, its hardware acceleration has drawn significant attention from the research community recently. We propose a high-speed processing strategy to construct a new High-performance Polynomial Multiplication Accelerator (HPMA) for key encapsulation mechanism (KEM) Saber. Firstly, we have given a detailed mathematical derivation to obtain a low-latency processing algorithm for Saber polynomial multiplication. Then, we have innovatively used the derived the proposed algorithm to construct a new structure HPMA for FPGA implementation. Lastly, we have demonstrated the superior performance of the proposed HPMA-Saber by comparing with state-of-the-art works. The proposed design strategy is highly efficient and the obtained results can be useful for the PQC research community. 
    more » « less
  4. Ring-Binary-Learning-with-Errors (RBLWE)-based post-quantum cryptography (PQC) is a promising scheme suitable for lightweight applications. This paper presents an efficient hardware systolic accelerator for RBLWE-based PQC, targeting high-performance applications. We have briefly given the algorithmic background for the proposed design. Then, we have transferred the proposed algorithmic operation into a new systolic accelerator. Lastly, field-programmable gate array (FPGA) implementation results have confirmed the efficiency of the proposed accelerator. 
    more » « less
  5. Following the rapid progress in the post-quantum cryptography (PQC) field that many efforts have been gradually switched to the hardware implementation side, this paper presents a novel systolic accelerator for polynomial multiplication within two lattice-based PQC algorithms, key encapsulation mechanism (KEM) Saber and binary Ring-Learning-with-Errors (BRLWE)-based encryption scheme. Based on the observation that polynomial multiplication over ring is the key arithmetic operation for the two PQC schemes, we have proposed a novel systolic accelerator for the targeted polynomial multiplications (applicable to two PQC schemes). Mathematical formulation is given to illustrate the proposed algorithmic operation for both schemes. Then, the proposed systolic accelerator is presented. Finally, field-programmable gate array (FPGA) implementation results have been provided to confirm the efficiency of the proposed systolic accelerator under two schemes. The proposed accelerator is highly efficient, and the following work may focus on cryptoprocessor design and side-channel attacks. 
    more » « less